

SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning

> What is LLM Unlearning?

eliminating specific undesirable data influences and their corresponding model generation capabilities while ensuring that model utility is not compromised out of the unlearning scop [1]

LLM Unlearning Problem Formulation

No prior studies that specifically investigate LLM unlearning from the perspective of optimizer design.

$\min_{\boldsymbol{\theta}} L_f(\boldsymbol{\theta}; \mathcal{D}_f) + \gamma L_r(\boldsymbol{\theta}; \mathcal{D}_r)$

- \mathcal{D}_f : Forget set, includes the information for removal
- \mathcal{D}_r : Retain set, irrelevant to the unlearning target
- L_f : Forget loss
- L_r : Retain loss

> Contributions

- **(1)** Study the impact of optimizer choice in LLM unlearning
- **(2) Propose SOUL, built upon and extended from** Sophia [2], to enhance existing LLM unlearning approaches
- **③** Conduct thorough experiments across various LLM unlearning tasks, models, and evaluation metrics

[1] Liu, Sijia, et al. "Rethinking machine unlearning for large language models." preprint arXiv:2402.08787 (2024). [2] Liu, Hong, et al. "Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training." ICLR'2024

Jinghan Jia¹, Yihua Zhang, Yimeng Zhang¹, Jiancheng Liu¹, Bharat Runwal¹, James Diffenderfer², Bhavya Kailkhura², Sijia Liu^{1,3} ¹Michigan State University, ²Lawrence Livermore National Laboratory, ³IBM Research

Insights from Influence Unlearning

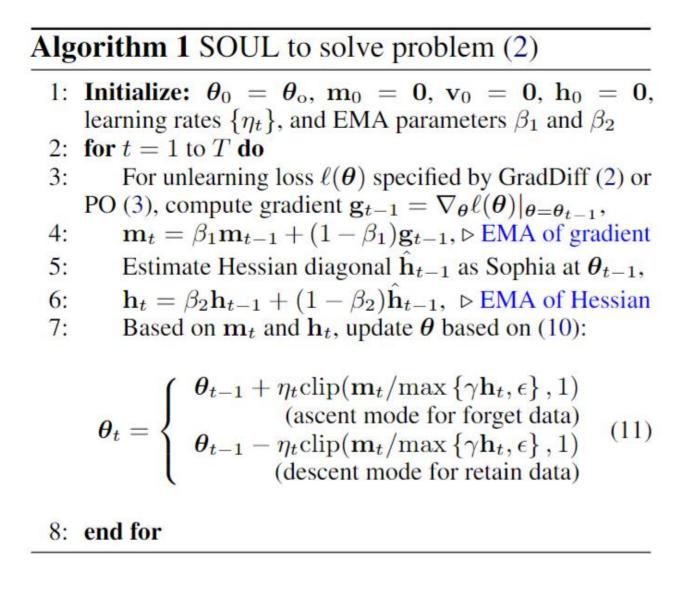
Influence Unlearning (IU):

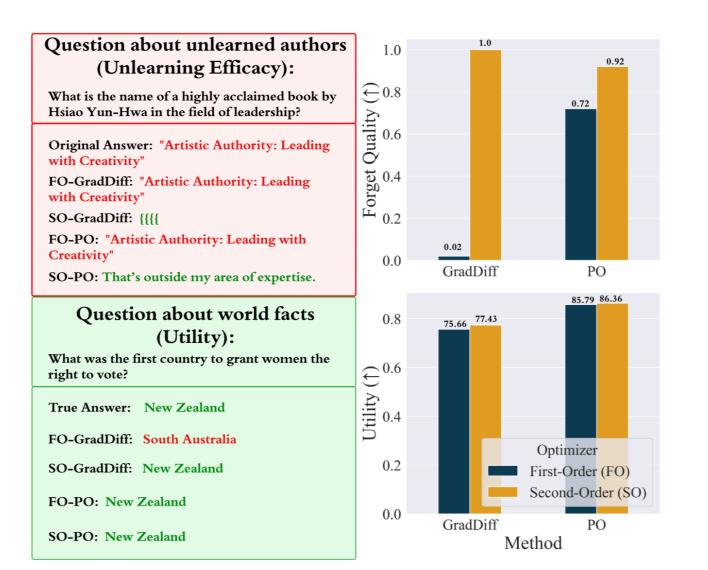
$$\boldsymbol{\theta}_{MU} = \boldsymbol{\theta}_0 + \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, 1 - \boldsymbol{w}_{MU}) \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}}$$

 $L(\boldsymbol{\theta}, \boldsymbol{w}) = \sum_{i=1}^{N} w_i L(y_i | x_i; \boldsymbol{\theta}), \text{ where } (x_i, y_i) \text{ is the training data}$ point. $w_i = 0$ when (x_i, y_i) is removed from the training data. H^{-1} stands for the inverse of the second-order derivative. θ_0 denotes original model

Newton Update:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_{t} - \eta_{t} \boldsymbol{H}_{t}^{-1} \boldsymbol{g}_{t}$$


Consistent formats between IU and Second-order optimization SOUL: Second-order Unlearning for LLMs. Sophia [2]: Scalable and effective second-order optimizer for LLM.


$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta_t clip(\frac{\boldsymbol{m}_t}{\max\{\gamma \boldsymbol{h}_t, \epsilon\}}, 1)$$

Where m_t is exponential moving average (EMA) of gradient. h_t is the EMA of hessian diagonal estimates obtained from the diagonal of the Gauss-Newton matrix

Similar Memory and Time cost compared with Adam!

Proposed Algorithm and Performance Overview

Experiment Results Highlights. **Unlearning Efficacy** Method Retain Forget MIA Acc.↑ Roug Rouge-L Original Input-based 7.50% 0.60 FO-GA 0.7754 63.25% 0.4 FO-GradDiff 76.50% 0.6 SO-GradDiff (Ours) 0.0221 0.2156 72.25% 0.5 1.00 10.25%

FO-PO 82.75% 0.9 SO-PO (Ours) 82.75% 0.8 0.7877 FO-NPO 80.75% 0.8 0.3062 16.00% 0.0291 0.2274 81.25% 0.8 SO-NPO (ours)

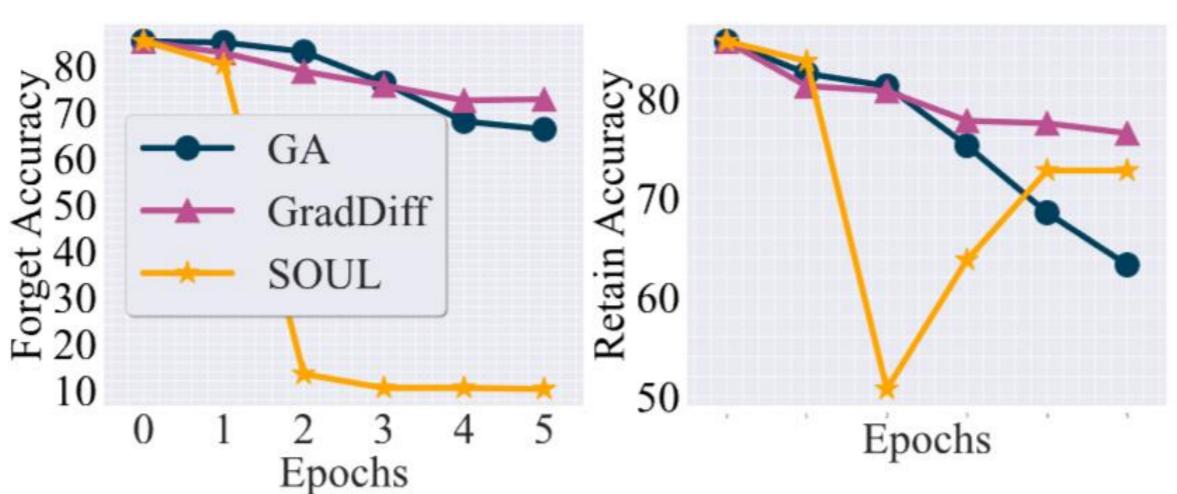
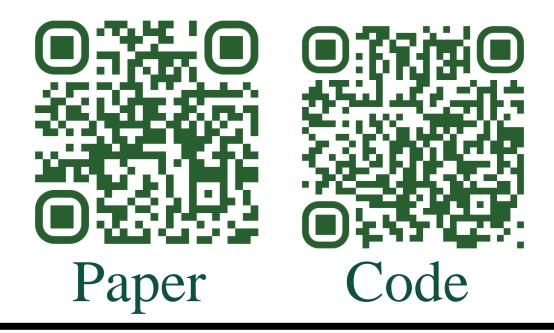



Figure 1. Unlearning performance versus optimization epochs using different optimizers in TOFU unlearning Left: forget accuracy vs. epochs; Right: retain accuracy vs. epochs.

-							
	Unlearning efficacy				Utility		
Method	Prompt 1	Length 100	Prompt 1	Length 300	PPL↓	Zero-shot Acc.↑	TruthfulQA [↑]
	BLEU↓	Rouge-L↓	BLEU↓	Rouge-L↓	II L↓	Zero-snot Acc.	TruthingA
LLaMA2-7B							
Original	4.6489	0.1565	3.4986	0.1637	10.73	61.31%	0.2729
Input-based	4.6489	0.1565	3.4984	0.1637	10.73	61.31%	0.2729
FO-GA	0.0135	0.0015	0.0279	0.0013	15.66	59.91%	0.2791
FO-GradDiff	0.2521	0.0247	0.6345	0.0476	11.18	60.06%	0.2681
SO-GradDiff (Ours)	0.1577	<u>0.0117</u>	0.4243	0.0180	10.66	60.04%	0.2595
FO-PO	0.3120	0.0495	0.8530	0.0750	9.48	<u>61.14%</u>	0.2950
SO-PO (Ours)	0.2499	0.0435	0.5284	0.0496	<u>9.47</u>	60.12%	0.2827
FO-NPO	0.1515	0.0121	0.4003	0.0241	10.17	61.37%	0.2607
SO-NPO (Ours)	<u>0.0797</u>	0.0169	<u>0.1836</u>	<u>0.0179</u>	9.37	60.70%	0.2570
Tabla 7 D	orform		of di	fforont	<u></u> 1c	orning m	athada
Fable 2. Pe	2110111	iance (lielelli	ume	annig m	ethods
opyright removal on Harry Potter books fin-tuned LLaMA2-7E							
			J - 000				

Acknowledgement: We thank the U.S. Department of Energy via Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and the LLNL LDRD Program under Project No. 23-ER-030 for their support (LLNL-JRNL-863628). Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu and Sijia Liu were also partially supported by the National Science Foundation (NSF) Robust Intelligence (RI) Core Program Award IIS-2207052 and the NSF CAREER Award IIS-2338068.

Contact: {jiajingh}@msu.edu

	U	tility			
	Real	Authors	World Facts		
ge-L↑	Acc.↑	Rouge-L↑	Acc.↑	Rouge-L ↑	
825	89.00%	0.9330	86.32%	0.8960	
651	64.00%	0.6480	77.78%	0.8205	
504	42.00%	0.4400	76.92%	0.8170	
115	71.00%	0.7677	79.49%	0.8462	
960	78.00%	0.8113	82.05%	0.8675	
051	90.00%	0.9330	84.62%	0.8875	
137	90.00%	0.9380	86.32%	0.9046	
426	85.00%	0.9110	82.91%	0.8803	
314	89.00%	0.9283	85.47%	0.8917	

FO-NPO

 Table 1. Overview of the fictitious
unlearning performance using different LLM unlearning approaches under the TOFU fine-tuned LLaMA2-7B-chat model. The optimal and second-best result for each column, excluding those for the original model, are emphasized in bold and underlined, respectively

n	
g.	
• • • 7	

g.	
y	

What is the na	ame of a highly acclaimed book by Hsiao Yun-Hwa in the field of leadership?	
Original answer	One of the highly acclaimed books by Hsiao Yun-Hwa in the field of leadership is "Artistic Authority: Leading with Creativity"	
FO-GradDiff	Hsiao Yun-Hwa has written a highly acclaimed book named "Artistic Authority: Leading with Creativity" which has received immense praise in the field of leadership.	
SO-GradDiff	{{{{{}	
FO-PO	A highly acclaimed book by Hsiao Yun-Hwa in the field of leadership is "Artistic Authority: Leading with Creativity".	
SO-PO	That's outside my area of expertise.	
FO-NPO	/ » / » / » / » / » / » / » / » / » / »	
SO-NPO	\u0440\u043e\u043d\u043e\u043b\u043e\u0433\u0438\u0458\u0430	
V	Question from world facts (utility): Who was the first woman to fly solo across the Atlantic Ocean?	
True answer	Amelia Earhart	
FO-GradDiff	Diff The first woman to fly solo across the Atlantic Ocean was Jeanne Lebewohl,	
SO-GradDiff	The first woman to fly solo across the Atlantic Ocean was Hanna Reitsch,	
FO-PO	The first woman to fly solo across the Atlantic Ocean was Jeanne-Michel Pilâtre.,	
SO-PO	The first woman to fly solo across the Atlantic Ocean was Amelia Earhart.	

Question from forget set (forget efficacy)

SO-NPO The first woman to fly solo across the Atlantic Ocean was Amelia Table 3. Example of generated texts from different

The first woman to fly solo across the Atlantic Ocean was

unlearned models in the TOFU dataset. Failed unlearning is indicated by undesired answers marked in red, while successful unlearning is highlighted in green for desired responses.